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Abstract Three Sophiodela tiger beetle species (Coleoptera, Cicindelidae) are distributed in Japan. To
infer their divergence process, we examined mitochondrial cytochrome ¢ oxidase subunit I (COI) se-
quences of Sophiodela populations in Japan and mainland East Asia. Our divergence time estimation
suggests that S. ferriei (FLEUTIAUX, 1894) in the Amami Islands diverged 2.2 million years ago (mya)
from a common ancestor of S. chinensis (DEGEER, 1774) in China and Korea, and of S. japonica
(THUNBERG, 1781) and S. okinawana (NAKANE, 1957) in Japan. The divergence time of the latter two
groups was estimated at 1.1 mya during the late Early Pleistocene. The ancestor of S. japonica and S.
okinawana derived from S. chinensis may have expanded its range over the ancient Japanese archipel-
ago from Honshu to Okinawajima among the Ryukyu Islands. Its immigration to Okinawajima during
the Early Pleistocene may have occurred via a land bridge between the present locations of the Tokara
Islands (Tokara Ridge) and Okinawajima, without passing the Amami Islands (southeast of the land
bridge) and contacting with S. ferriei. This land bridge disappeared following the development of the
Okinawa Trough in the Middle Pleistocene, resulting in complete isolation of the population (now S.
okinawana) on Okinawajima from the population on the main islands of Japan (now S. japonica)
around 0.9 mya.

Key words: Divergence time, Pleistocene, Tokara Ridge, East Asia, Mitochondrial cytochrome ¢ oxi-
dase subunit [ (COI).

Introduction

Sophiodela was proposed as a subgenus of Cicindela by NAKANE (1955), who designated Cicin-
dela japonica THUNBERG, 1781 as the type species, which had been treated as a subspecies of C. chin-
ensis DEGEER, 1774 by HORN (1915). RivALIER (1961) proposed another subgenus, Sericina, compris-
ing C. chinensis, C. ferriei FLEUTIAUX, 1894, and C. cyanea FABRICIUS, 1787, and treated ‘japonica’as
a subspecies of C. chinensis. WIESNER (1992) correctly arranged Sericina as a junior synonym of
Sophiodela, but included C. cyanea and counted ‘japonica’ as a subspecies of C. chinensis, following
RIVALIER (1961). Although this classification has been widely accepted, our recent molecular phyloge-
netic study of Sophiodela and related groups (Tsuil et al., 2016) showed that Sophiodela is sister to
the genus Cosmodela, and not directly related to the Cicindela genus members evaluated (i.e., subgen-
era Cicindela, Pachydela, and Tribonia). Recently, FUKUDA et al. (2019) proposed the treatment of
Sophiodela as a genus based on the characteristic structure of the internal sac of the male genitalia.
FUKkuUDA et al. (2019) recognized four species from East Asia (S. chinensis, S. ferriei, S. japonica, and
S. okinawana (NAKANE, 1957)) as members of Sophiodela, but excluded C. cyanea from the Indian
subcontinent, and moved it to the Cicindela subgenus Pancallia. Thus, the genus Sophiodela is en-
demic to East Asia. In addition to the rearrangement of the Sophiodela species, new insights for
Sophiodela subspecies are proposed (FUKUDA et al., 2015; Tsui et al., 2016; FUKuDA et al., 2019).
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Sophiodela ferriei populations in Amamioshima and Tokunoshima have been treated as subspecies S.
[ ferriei and S. f. indigonacea (WIESTER, 1992), but FUKUDA ef al. (2015) synonymized these based on
genital characters. Similarly, the uncertain status for two subspecies of S. chinensis and S. c. chinensis
from China and S. c. flammifera from Korea was reported (Tsuii et al., 2016; FUKUDA et al., 2019).

Of the four species of Sophiodela, only one species, S. chinensis, occurs in mainland East Asia
(China and Korea), whereas in Japan, three species, S. japonica, S. ferriei, and S. okinawana occur,
and in detail, they are observed in the main islands of Japan (Kyushu, Shikoku, and Honshu), the
Amami Islands, and the Okinawa Islands, respectively. The diversification of Sophiodela in Japan is
interesting from the perspective of historical biogeography. We previously discussed their divergence
process (Tsuil et al., 2016), but not in detail, especially for S. japonica and S. okinawana. OSOZAWA et
al. (2016) performed a molecular phylogenetic analysis of Sophiodela species and proposed that the
divergence of three species, excluding S. ferriei, was facilitated by the synchronous isolation of
Ryukyu and other Japanese islands 1.55 million years ago (mya) (Os0zAWA et al., 2012). However,
they did not consider the divergence process of S. japonica and S. okinawana in detail. In this study,
we conducted a phylogeographic analysis of Sophiodela species in Japan based on mitochondrial cy-
tochrome ¢ oxidase I (COI) sequence data and inferred the colonization history of Sophiodela species
in Japan. Although our study is similar to that by Osozawa et al. (2016), we used different approach
to estimate divergence time with a larger sample size and provided a novel explanation for the histori-
cal process leading to the enigmatic distribution of the most ancient Sophiodela species, S. ferriei, in
the Amami Islands between the ranges of recently diverged sister species, S. japonica and S. okinawa-
na (Tsuit et al., 2016).

Material and Methods

In this study, we used four Sophiodela species, as well as Cosmodela batesi (FLEUTIAUX, 1893)
as an outgroup species (Fig. 1). We performed molecular phylogenetic analysis of 262 beetles pre-
served in 99% ethanol, using 736-bp sequences of the mitochondrial COI gene (Table 1 & Fig. 1).
DNA extraction, polymerase chain reaction (PCR) and sequencing methods were as described in Tsuin
et al. (2016). All sequence data were deposited in the DNA Data Bank of Japan (DDBJ; see Table 1
for accession numbers). We used 89 sequences obtained in this study and 23 previously published se-
quences (Tsu et al., 2016) in the following analysis.

We conducted a maximum likelihood (ML) analysis with COI sequences using the RAXML ver-
sion 8§ software (STAMATAKIS, 2014). Based on an optimal partitioning scheme search using the Parti-
tionFinder software (LANFER ef al., 2012), the first and second codon positions and the third codon po-
sition were treated as separate partitions, and the GTR+G (general time reversible model with gamma
distribution for rate heterogeneity) substitution model was applied to each partition individually. We
conducted a RAPID ML analysis with 1,000 bootstrap analyses. To estimate divergence time based on
COI sequences, we used the BEAST?2 version 2.5.0 software (BOUCKAERT et al., 2014). We performed
partitioned analysis as in the ML analysis, but applied the HKY+G substitution mode to the first/sec-
ond codon position partition and GTR+G to the third codon position according to the PartitionFinder
analysis results. The tree prior was the birth—death process model, and a strict clock model was used.
For time calibration, we set the node age prior for the most recent common ancestor of Sophiodela (S.
chinensis + S. japonica + S. okinawana + S. ferriei) as a normal distribution with a mean of 2.52 Ma
and standard deviation (SD) of 0.5 mya, referring to the divergence time estimation provided by Tsui
et al. (2016). A Markov chain Monte Carlo (MCMC) run was conducted for 50 million generations,
sampling every 5,000 generations. The results were verified using the TRACER version 1.7 software
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Table 1. Sampling sites, cytochrome ¢ oxidase subunit I (COI) haplotypes, and accession numbers.

Species
Locality

COI haplotype ID [DDBJ accession number]
(number of individuals)

S. chinensis
Guizhou, China
Henan, China
Mt.Tianzhu, Anhui, China
Sichuan, China
Gyongsangnam, Korea
North Chungcheong, Koera
Ulsan, Korea

S. ferriei
Amamioshima

Tokunoshima

S. japonica
Aomori
Fukuoka
Hiroshima
Ishikawa

Kagoshima
Kanagawa
Kochi
Kuchinoerabujima
Kumamoto
Kyoto

Mie
Miyazaki
Nagano
Nagasaki
Niigata
Shimane
Tsushima

Wakayama

Yakushima

S. okinawana
Okinawajima
Ishigakijima

C. batesi
Taipei, Taiwan
Nantou, Taiwan
Iriomotejima

C15 [AB822059] (1)

C11 [AB822043] (2), C13 [AB822044] (1), C14 [AB822053] (1)

€5 [LC421754] (1), C6 [LC421755] (1), C8 [AB822030] (1), C11 [AB822043*] (1)
C16 [AB822071] (1)

C7 [AB822034%] (1), C10 [AB822031] (1)

€9 [LC421756*] (1)

C7 [AB822034] (9), C9 [LC421756] (1), C12 [AB822035] (1)

F22 [LC421760] (1), F26 [LC421763] (1), F27 [LC421764] (2), F30 [LC421767] (1), F31
[LC421768] (1), F32 [AB822050] (3), F36 [LC421771] (1), F37 [LC421772] (1), F38
[AB822051] (1), F39 [LC421773] (1), F42 [LC421776] (1), F43 [LC421777] (1)

F23 [LC421761] (1), F24 [AB822039] (5), F25 [LC421762] (10), F28 [LC421765] (1), F29
[LC421766] (2), F31 [LC421768%] (1), F32 [AB822040] (1), F33 [LC421769] (1), F34
[AB822041] (1), F35 [LC421770] (1), F40 [LC421774] (1), FAl [LCA421775] (1), F44
[LC421778] (1)

157 [LC421789] (1), 158 [AB822047%] (4), 173 [LC421799] (2), 174 [AB822037] (3)

148-2 [LC421782] (1)

155 [AB822045%] (1), 179 [LC421806*] (1)

154 [LC421787] (1), 158 [AB822047%] (1), J95 [LC421820] (1), 196 [AB822052] (1), J97
[LC421821] (1)

51 [LCA421784%] (1), 153 [LC421786*] (1), J55 [AB822045] (1), 179 [LC421806] (1), I80-
2 [LC421807] (1), 181 [LC421808] (1), J94 [LC421819] (1)

145 [LCA421779] (5), J50-1 [LC421805, LC426080] (8), J50-2 [LC421804] (1), J59-1
[AB822048] (9), 159-2 [LC426081] (1), J60 [LC421790] (1), J61 [AB822029] (1)

171 [AB822049%] (2), 1107 [LC421831] (2), 1108 [LCA421832] (1), 1106 [LC421830] (1)
180-1 [LC426078] (4)

152 [LC421785] (1), J53 [LC421786] (1)

146 [LC421780] (1), J47 [LC421781] (2), 158 [AB822047%] (1), J71{AB822049%] (1), J72
[LC421798] (1), 177 [LC421802] (4), 178 [LC421803] (2), J76 [LC421801] (1), J93
[LC421818*] (1)

158 [AB822047*] (4), 190 [LC421815] (1), 191 [LC421816] (1), 192 [LC421817] (1), J93
[LC421818] (1)

148-2 [LC421782%] (2), 151 [LC421784] (2), J53 [LC421786*] (1), 156 [LC421788] (1),
169 [LC421797] (1), J75 [LC421800] (1)

159-1 [AB822048%] (1)

J148-1 [LC426079] (1), J48-2 [LC421782*%] (2)

158 [AB822047*] (3), 87 [LC421812] (1), 88 [LC421813] (1), 189 [LC421814] (1)

148-2 [LCA421782%] (1), 155 [AB822045%] (2), J68 [LC421796] (1), J71 [AB822049], (5),
179 [LC421806*] (2)

149 [LC421783] (8), 162 [LC421791] (4), J63 [LC421792] (2), J64 [LC421793] (1), 165
[LC421794] (1), J66 [LC421795] (1), 167 [AB822038] (2), 1105 [LC421829] (2)

158 [AB822047] (2), 177 [LC421802%] (2), I84 [LC421809] (1), J85 [LC421810] (1), I86
[LC421811] (1)

180-2 [LC421807%] (10), 780-3 [LC426077] (1), 183 [AB822046] (1), 198 [LC421822] (2),
J99 [LC421823] (2), J100-1 {LC426076] (1), J100-2 [LC421824] (1), J101 [LC421825]
(1), 7102 [LC421826] (1), 7103 [LC421827] (1), 1104 [LC421828] (1)

017 [LC421757] (1), 018 [AB822033] (10), 019 [AB822032] (1), 021 [LC421759] (1)
019 [AB822032*] (7), 020 [LC421758] (1)

B1 [LC421750] (1), B2 [LC421751] (1)
B3 [LC421752] (1)
B4 [LC421753] (7)

Haplotypes J50-2 and J80-1 include undetermined nucleotides (N). Asterisks (*) indicate accession numbers of identical
haplotypes previously registered from other localities.
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(RAMBAUT et al., 2018). An age-calibrated tree was obtained after removing the initial 1,000 trees as
burn-in. We constructed statistical parsimony networks (TCS networks; TEMPLETON ef al., 1992) for
the three Japanese Sophiodela species using the PopART program (Population Analysis with Reticu-
late Trees; available at http://popart.otago.ac.nz).

Results and Discussion

Haplotypes of four Sophiodela species were grouped separately from one another (Figs. 1 & 2).
Sophiodela ferriei populations in Amamioshima and Tokunoshima that have previously been treated
as subspecies (WIESTER, 1992, but see FUKUDA et al., 2015) were not distinguished by the COI se-
quences (Figs. 1 & 2), which is consistent with FUKUDA et al. (2015). Similarly, the sequences of the
two subspecies of S. chinensis from China and Korea, were not discriminated (Figs. 1 & 2) as was
found by Tsui et al. (2016) (see also FUKUDA et al., 2019). The time-calibrated COI gene tree (Fig. 3)
suggests that S. ferriei diverged 2.2 mya (95% highest posterior density interval [HPDI], 1.2-3.3 mya)
from the common ancestor of S. chinensis, S. japonica, and S. okinawana, followed by the divergence
of S. chinensis from a common ancestor of S. japonica and S. okinawana 1.1 mya (95% HPDI, 0.5—
1.7 mya). Finally, S. japonica and S. okinawana diverged 0.9 mya (95% HPDI, 0.4-1.4 mya). The di-
vergence time between S. chinensis and a common ancestor of S. japonica and S. okinawana, 1.1
mya, was more recent than the time proposed by OsozawA et al. (2016), who assumed that these taxa
diverged 1.55 mya after the opening of straits around the Ryukyu and other Japanese Islands based on
their hypothesis (OSOzZAWA ef al., 2012). Note that we calibrated divergence time based on the COI
molecular clock (PAPADOPAULOU et al., 2010; see Tsull et al., 2016 for details) and not geological evi-
dence. However, our results do not contradict the proposition by OsozAwA et al. (2016) that the diver-
gence of the three Sophiodela species occurred after 1.55 mya.

Haplotype diversity in S. okinawana was small (5 haplotypes; nucleotide diversity, = = 0.0016;
Fig. 2), likely due to its small population size. The most recent common ancestor (tMRCA) of S. oki-
nawana was estimated at 0.2 mya (95% HPDI, 0.05-0.3 mya; Fig. 3). We found as many as 68 haplo-
types in S. japonica, which occurred in many islands over a much wider range (Fig. 2), with tMRCA of
0.5 mya (95% HPDI, 0.2-0.8 mya; Fig. 3), and higher nucleotide diversity (= = 0.011) than those of S.
okinawana and S. ferriei (m = 0.007). Sophiodela japonica haplotypes were highly divergent among re-
gions. Haplotypes from Yakushima (including those from Kuchinoerabujima) and Tsushima diverged
0.3 mya (95% HPDI, 0.1-0.4 mya; Fig. 3) from those of Kyushu and western Honshu (Fig. 3), and
were unique to those islands, except for one haplotype shared by Yakushima and Kyushu populations
(Figs. 1 & 2). In contrast, the Kyushu population shared haplotypes with Honshu and Shikoku popula-
tions in addition to unique (private) haplotypes (Figs. 1 & 2). These findings suggest that populations
in Yakushima—Kuchinoerabujima and Tsushima have long been isolated, whereas those in Kyushu and
western Honshu diverged recently, and gene flow may have occurred. In Honshu and Shikoku, haplo-
types were largely divergent among regions (western Honshu and Shikoku, Kinki, Kanto, and northern
Honshu); however, some haplotypes were shared among regions (Figs. | & 2), suggesting recent diver-
gence with gene flow among regions.

The geographic distribution of the three Japanese Sophiodela species is enigmatic, as the ranges
of sister species S. japonica and S. okinawana are intervened by the range of S. ferriei, which colo-
nized Japan much earlier than the other two species. The common ancestor of S. japonica and S. oki-
nawana, derived from S. chinensis, likely immigrated to Japan from South Korea over a land bridge
during the Middle Pleistocene, with one population colonizing the main islands of Japan (Kyushu,
Shikoku, and Honshu). Another population, the ancestral S. okinawana, immigrated to Okinawajima
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by crossing the long distance between southern Kyushu and Okinawajima. In our previous paper, we
questioned how the ancestral S. okinawana could have passed through the Amami Islands, where S.
ferriei must have existed, and suggested two possibilities (Tsuil et al., 2016). The first is that S. oki-
nawana might not have reached the Amami Islands due to the lack of available land bridges, and the
second is that S. okinawana might have reached the Amami Islands but did not colonize successfully
due to the presence of S. ferriei via ecological processes, such as reproductive interference and re-
source competition (Tsull et al., 2016). Because Sophiodela beetles primarily inhabit inland areas, we
assume that they are unable to undertake colonization by long distance flights across the sea. In the
present study, we propose that the ancestral S. okinawana could have colonized Okinawajima without
passing through the Amami Islands, based on the paleogeographical hypothesis of KiMURA (1996,
2002), who proposed the existence of a land bridge connecting southern Kyushu and Okinawajima,
via the Tokara Ridge northwest of the Amami Islands during the Early Pleistocene. During this period,
the ancestral S. okinawana may have occurred widely on lands north of the Amami Islands, separated
from S. ferriei. The land bridge disappeared in the Middle Pleistocene, following the development of
the Okinawa Trough (KiMURA, 1996, 2002), which may have resulted in extinction of the ancestral S.
okinawana in the Tokara Ridge area, where islands were small. Sophiodela species occur on Yakushi-
ma and Kuchinoerabujima, but have not been found on smaller islands, perhaps indicating that
Sophiodela populations cannot survive on small islands.

Recent human activity may have disturbed the natural distribution of Sophiodela species.
Sophiodela okinawana is considered to have recently colonized Ishigakijima from Okinawajima
(Fukuba, 2015; SATO & TAKAGI, 2006; Fig. 1). The existence of a common haplotype of S. okinawana
from both islands supports this hypothesis (Figs. 1-3; Osozawa et al., 2016). In addition, Cosmodela
batesi has recently been found on Iriomotejima (Hor1, 2002; SATO & TAKAGI, 2006; Fig. 1), although
this species was considered endemic to Taiwan. We found only one haplotype from the Iriomote popu-
lation, which is closely related to haplotypes from Taiwan (Figs. 1 & 2; Osozawa et al., 2016). Low
haplotype diversity in Iriomotejima suggests their recent colonization from somewhere in Taiwan.
SATO & TAKAGI (2006) suggested that transportation development around these regions may have facil-
itated their immigration.
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