The Underground Fauna of Agyrtidae and the Subfamily Cholevinae of Leiodidae (Coleoptera) in Eastern Shikoku, Southwest Japan, with a Summary of the Habitat Diversity of Some Japanese Cholevines

Masaaki NISHIKAWA1), Yasuhiko HAYASHI2), Masataka YOSHIDA3) and Yoshifumi FUJITANI4)

1) Kashiwagaya 1112–16, Ebina, 243–0402 Japan
2) Suimeidai 3–1–73, Kawanishi, 666–0116 Japan
3) Myōdō-chō 1–295–1, Tokushima, 770–0047 Japan
4) Yoshimune 137, Kita-ku, Okayama, 701–1143 Japan

Abstract Agyrtid and cholevine leiodid beetles collected using baited deep-soil traps in eastern Shikoku, Southwest Japan, are recorded. The structure of the traps and the operation in the field are presented. Apteroloma discicolle discicolle (LEWIS), Catops hilleri KRAATZ, C. miensis miensis NAKANE, Mesocatops japonicus (JEANNEL), Sciordrepoides isukamotoi NAKANE, and Ptomaphagus (Ptomaphagus) kunitzeni SOKOLOWSKI were collected from underground non-cave habitats for the first time. The performance of the trap is discussed, and the beetles collected are discussed in relation to their habitat diversity. The dispersal of cave-dwelling cholevines in Shikoku is briefly described using a model species, Catops hisamatsui.

Introduction

A soil-dwelling beetle fauna may consist of a combination of litter-dwelling, soil-limited endogeanean and hypogean beetles and cave-dwelling beetles. So-called cave-dwelling beetles are well known to also occur habitats other than caves; e.g., in the upper hypogean zone, narrow spaces of fractured rocks, and in colluvial and talus slopes (GIACHINO et al., 1998). Regarding the upper hypogean zone, it has been thought that this zone is the original habitat of terrestrial cave animals, but the zone is often reached at a depth of only 10 or 20 cm from the ground surface, because its thickness and depth from the surface change greatly according to the topography and geological features of each site (UENO, 1987). Such variability in thickness of the upper hypogean zone may markedly affect collecting results of soil-dwelling beetles, depending on the collecting depth.

To date, cave-dwelling Catops and Nemadus species have been recorded from epigean habitats in Japan (MIYAMA, 1985; NISHIKAWA, 1992, 1995 a; HOSHINA, 2006; INAGAKI et al., 2008; NISHIKAWA et al., 2011), whereas epigean Catops and Nemadus species also from caves (YOSHIDA & NOMURA, 1952; HAYASHI, 1985; SHIMANO, 1999; THE JAPAN COLEOPTEROLOGICAL SOCIETY, 2007). Actually, Catops hisamatsui Y. HAYASHI, 1985, regarded as a cave-dweller, has also been recorded from upper hypogean habitats (HARUSAWA & YAMAMOTO, 2000; NISHIKAWA et al., 2011). It is hypothesized, based on the above records, that cave-dwelling and epigean cholevines also occur in underground non-cave habitats.

However, in order to test the above hypothesis, it is essential to device efficient methods for collecting of soil-dwelling beetles. The Tullgren funnel method is commonly used for extracting soil-dwelling beetles, but it is somewhat inefficient for collecting predaceous and scavenging beetles. One of the authors, M. YOSHIDA, independently devised a trapping method to effectively collect the beetles,
and made faunal investigations together with his collaborators using this method (e.g., ÜENO, 2009; ITO, 2010; YOSHIDA & TANAKA, 2011).

In this paper, we report the underground fauna of agyrtid and cholevine leiodid beetles in eastern Shikoku, Southwest Japan. We summarize the habitat diversity of the Japanese cholevine beetles found in underground habitats, and we briefly describe the dispersal of cave-dwelling cholevines in Shikoku, using C. hisamatsui as a model species.

Material and Methods

Material. Specimens examined in this study have been deposited in the following museum and private collections:
- EUM Ehime University Museum, Matsuyama (Masahiro SAKAI and Hiroyuki YOSHIKOMI);
- MNC Collection of Masaaki NISHIKAWA, Ebina, Japan;
- MYC Collection of Masataka YOSHIDA, Tokushima, Japan;
- YFC Collection of Yoshifumi FUJITANI, Okayama, Japan.

All specimens excepting in the YFC were identified or revised by Y. HAYASHI or M. NISHIKAWA, whereas those in the YFC were identified by Y. FUJITANI.

![Fig. 1. Structure and use of a baited deep-soil trap. — a, Structure of the trap (see text); b–i, the technique used for installing the trap. — a, Parts of the trap (bc: bait container; sc: solution cup; l: lid; tc: trap cover); b–c, to set the trap, a hole is dug at a selected site; the hole is dug vertically or horizontally with an iron bar to 10–15 cm width and 40–60 cm depth; d–f, the trap is set at the end of the hole and is packed there with pebbles; for a thread leading to the trap, its other end is drawn out from the hole for a guide; g, the hole is further filled up with small stones; h, the entrance of the hole is completely coated with small stones and soil; i, stones are piled up in the entrance as a mark to find the hole (indicated by an arrow).](image-url)
Methods. Collecting method and collecting sites. To collect soil-dwelling beetles, a baited deep-soil trap was newly devised for use at the level closest to their habitat (Fig. 1.a). The main body of the trap is made from a small, quadrate airtight container, and the trap includes a bait container (bc), a solution cup (sc), a lid (l) and a trap cover (tc). Several small holes are opened for drainage in the lateral sides of the bait container. The central part of the lid of the bait container is cut off in a circle, from which insects fall to the solution cup set into the container. The solution cup is filled with a preserving agent for collected insects, and the trap cover is attached to the lid to protect the trap from the soil.

The technique for installing the trap is explained in Figure 1.b–i. Twenty-two collecting sites were randomly selected in eastern Shikoku, Southwest Japan (Fig. 2; Table 1). Traps baited with chicken bone or minced dry silk worms were checked once or twice for three months after trap installation in the field.

Record of specimens collected. We followed PERREAU (2000) for the classification of collected cholevines. All localities were georeferenced using the functional indication of “Watchizu,” an online map provided by the Geospatial Information Authority of Japan (http://watchizu.gsi.go.jp/).

Habitat diversity of the Japanese cholevines. We searched the literature for habitat data on the Japanese cholevines; these data are compiled together with the data obtained in the present study.

Distribution of Catops hisamatsui. We searched the literature for collecting data, which include
the data in the original records of *C. hisamatsui* from Shikoku. Of these records, most records from caves were for undetermined *Catops* species or *Catops ohbayashii* Jeannel, 1954; however, we considered that these recorded beetles are probably *C. hisamatsui*, because this was described in 1985 (Hayashi, 1985) and has not been known to occur sympatrically with other cave-dwelling *Catops* species inside caves of Shikoku. However, we excluded the species recorded as *Catops* sp.? from Mikura-dô, Kochi Prefecture (Nishikawa, 1954), because of the uncertainty in genus identification.

Maps. Collecting sites and distribution maps were produced and edited with iMap 3 version 3.5 (Biovolution, Belgium) and Adobe Photoshop CS4 version 11.0.2 software. We used MapMap version 6.0 application software (Kamada, 2011) to create the map layers.

Results

The baited deep-soil traps efficiently attracted soil-dwelling agyrtid and cholevine beetles. A total of 177 specimens belonging to nine species were collected from 22 sites in eastern Shikoku (Fig. 2; Table 1). The collection included one species of Agyrtaidae and eight species of the leiodid subfamily Cholevinae (see List of species collected). Of these, *Catops hilleri* Kraatz, 1877, *Catops miensis miensis* Nakane, 1956, *Sciodrepoides tsukamotoi* Nakane, 1956, and *Ptomaphagus* (Ptomaphagus) kunzieni Sokolowski, 1957, all of which have hitherto been known as epigean dwellers, were unexpectedly collected from underground habitats for the first time, together with agyrtid *Apteroloma discicolle discicolle* (Lewis 1893). *Nemadus* (Nemadus) isiharaii Miyama, 1985, *Nemadus* (Nemadus) *japanicus* Coiffait et S.-I. Ue no, 1955, and *Mesocatops japonicus* Jeannel, 1936, which have

Table 1. Locality data for the 22 collecting sites and main habitat(s) of the members in each collection.

<table>
<thead>
<tr>
<th>Code</th>
<th>Collecting site</th>
<th>Latitude (°N)</th>
<th>Longitude (°E)</th>
<th>Altitude (m)</th>
<th>Habitat(s) of the members</th>
</tr>
</thead>
<tbody>
<tr>
<td>S01</td>
<td>Nakatani</td>
<td>34.1912</td>
<td>134.5230</td>
<td>120</td>
<td>C</td>
</tr>
<tr>
<td>S02</td>
<td>Munakê-dani</td>
<td>34.1854</td>
<td>134.5516</td>
<td>60</td>
<td>E & C</td>
</tr>
<tr>
<td>S03</td>
<td>Udatsu-goe</td>
<td>34.1810</td>
<td>134.4836</td>
<td>210</td>
<td>E</td>
</tr>
<tr>
<td>S04</td>
<td>Kajiyama</td>
<td>33.9978</td>
<td>134.1169</td>
<td>420</td>
<td>E</td>
</tr>
<tr>
<td>S05</td>
<td>Nakagoya</td>
<td>33.9222</td>
<td>134.4860</td>
<td>80</td>
<td>C</td>
</tr>
<tr>
<td>S06</td>
<td>Mt. Kumasô-yama</td>
<td>33.9119</td>
<td>134.2893</td>
<td>1120</td>
<td>E</td>
</tr>
<tr>
<td>S07</td>
<td>Shirutani</td>
<td>33.9053</td>
<td>134.5774</td>
<td>90</td>
<td>E & C</td>
</tr>
<tr>
<td>S08</td>
<td>Mt. Takashiro-yama</td>
<td>33.8960</td>
<td>134.2481</td>
<td>1400</td>
<td>C</td>
</tr>
<tr>
<td>S09</td>
<td>Mizunashi</td>
<td>33.8834</td>
<td>133.7586</td>
<td>180</td>
<td>C</td>
</tr>
<tr>
<td>S10</td>
<td>Ryûô-zan</td>
<td>33.8634</td>
<td>134.4697</td>
<td>350</td>
<td>E</td>
</tr>
<tr>
<td>S11</td>
<td>Sezu</td>
<td>33.8575</td>
<td>134.2648</td>
<td>450</td>
<td>E</td>
</tr>
<tr>
<td>S12</td>
<td>Minamigawa</td>
<td>33.8408</td>
<td>134.5066</td>
<td>120</td>
<td>E</td>
</tr>
<tr>
<td>S13</td>
<td>Kamouda</td>
<td>33.8388</td>
<td>134.7383</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>S14</td>
<td>Mt. Ôkubo-yama</td>
<td>33.8369</td>
<td>134.1674</td>
<td>1300</td>
<td>E</td>
</tr>
<tr>
<td>S15</td>
<td>Myôjûin</td>
<td>33.7734</td>
<td>134.3536</td>
<td>230/260</td>
<td>E/E & C</td>
</tr>
<tr>
<td>S16</td>
<td>Befakyô</td>
<td>33.7709</td>
<td>134.0297</td>
<td>620</td>
<td>E</td>
</tr>
<tr>
<td>S17</td>
<td>Hirayabu</td>
<td>33.7477</td>
<td>134.3179</td>
<td>390</td>
<td>E</td>
</tr>
<tr>
<td>S18</td>
<td>Rokuchô</td>
<td>33.7394</td>
<td>134.3065</td>
<td>440</td>
<td>E</td>
</tr>
<tr>
<td>S19</td>
<td>Kainose</td>
<td>33.7188</td>
<td>134.3116</td>
<td>180/200</td>
<td>C / E</td>
</tr>
<tr>
<td>S20</td>
<td>Akimaru</td>
<td>33.6986</td>
<td>134.4944</td>
<td>180</td>
<td>C</td>
</tr>
<tr>
<td>S21</td>
<td>Okutani</td>
<td>33.6894</td>
<td>134.3681</td>
<td>180/220</td>
<td>E & C/C</td>
</tr>
<tr>
<td>S22</td>
<td>Shimoôuchi</td>
<td>33.6578</td>
<td>134.2608</td>
<td>130</td>
<td>E & C</td>
</tr>
</tbody>
</table>

(E, epigean habitat; C, cave-habitat.)
been found from both epigean and cave habitats, were also collected from underground non-cave habitats. The habitat diversity of the Japanese cholevine beetles found from underground habitats is summarized in Table 2.

Table 2. Habitat diversity of the Japanese cholevine beetles found in underground habitats.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Epigean habitats (incl. leaf litter)</th>
<th>Underground habitats</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Endogean/UHZ</td>
<td>Cave</td>
</tr>
<tr>
<td>Anemadini</td>
<td>X</td>
<td>X'</td>
</tr>
<tr>
<td>Anemadiola inordinata SZYMczAKOWSKI, 1963</td>
<td>X</td>
<td>X'</td>
</tr>
<tr>
<td>Nemad us (Nemad us) ishiharai MIYAMA, 1985</td>
<td>X'</td>
<td>X</td>
</tr>
<tr>
<td>N. (N.) japonus COIFFAIT et S.-I. UE NO, 1955</td>
<td>X'</td>
<td>X</td>
</tr>
<tr>
<td>N. (N.) uenoi M. NISHIKAWA, 1995</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cholevini</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Catops dorogawensis NAKANE, 1997</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C. hilleri KRAATZ, 1877</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C. hisamatsui Y. HAYASHI, 1985</td>
<td>X'</td>
<td>X'</td>
</tr>
<tr>
<td>C. miensis miensis NAKANE, 1956</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C. nipponensis JEANNE L, 1936</td>
<td>X'</td>
<td>X</td>
</tr>
<tr>
<td>C. ohbayashii JEANNE L, 1954</td>
<td>X'</td>
<td>X</td>
</tr>
<tr>
<td>C. sparcen punctatus JEANNE L, 1936</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>C. sonei M. NISHIKAWA, 1995</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mesocatops japonicus (JEANNE L, 1936)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Sciodrepoides tsukamotoi NAKANE, 1956</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ptomaphagin i</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Ptomaphagus (Ptomaphagus) kun teni SOKOLOWSKI, 1957</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>P. (P.) sp.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Remarks:</td>
<td></td>
<td>X'</td>
</tr>
</tbody>
</table>

According to literatures, there have been a number of records of Catops hisamatsui from Shikoku. Based on the combination of the previous and present data (List of species collected; Fig. 3; Appendices 1 & 2), it is revealed that this species has a very wide distribution range in Shikoku (though no record from Kagawa Prefecture).

The collecting sites can be divided into two types based on the present results and those of previous studies. In one type of collecting site, both epigean and cave-dwellers were collected, whereas in another, only one type of beetle was collected (Table 1).

List of Species Collected

Species first recorded from an underground non-cave habitat are indicated by an asterisk (*). The depth from the ground surface where the trap was installed is shown together with the type of bait in parentheses at each end. All specimens are deposited in MYC. KT, Koji TANAKA leg.; MY, Masa-taka YOSHIDA leg.; CB, trap baited with chicken bone; SW, trap baited with minced dry silk worms.
Family Agyrtidae
Subfamily Pterolomatinae
Apteroloma discicolle discicolle (Lewis, 1893)*
 Tokushima Pref.: 1♂, Udatsu-goe, 210 m in alt., Orino, Kitanada-chô, Naruto-shi, 5–11–V–2008, MY (50 cm; SW).

Family Leiodidae
Subfamily Cholevinae
Tribe Anemadini
Nemadus (Nemadus) ishiharai Miyama, 1985*
 Tokushima Pref.: 5♂♂, 3♀♀, Shimoôuchi, 130 m in alt., Aikawa, Kaiyô-chô, Kaifu-gun, 8–II–1–III–2009, KT (40 cm; SW).

Nemadus (Nemadus) japanus Coiffait et S.-I. Uéno, 1955*
 Tokushima Pref.: 1♂, Nakagoya, 80 m in alt., Tanano, Katsuura-chô, 23–II–30–III–2008, MY (40 cm; SW); 1♂, Shirutani, 90 m in alt., Kumadani-chô, Anan-shi, 4–14–V–2008, KT (40 cm; SW).
Underground Fauna of Agyrtidae and Leiodidae

Tribe Cholevini

Catops hilleri KRAATZ, 1877

Tokushima Pref.: 30♂♂, 23♀♀, Kajiyama, 420 m in alt., Anabuki-chō, Mima-shi, 26–X–9–XII–2008, KT (40 cm; SW); 1♀, Mt. Ôkubo-yama, 1,300 m in alt., Iwakura, Kisawa, Naka-gun, 24–VIII–28–IX–2008, MY (50 cm; SW); 1♂, Minamigawa, 120 m in alt., Wajikigō, Naka-chō, Naka-gun, 9–22–III–2008, KT (40 cm; SW); 1♂, 2♀♀, Rokuchō, 440 m in alt., Kawamata, Kaminaka, Naka-chō, 16–30–XII–2007, KT (40 cm; SW); 2♀♀, Okutani, 180 m in alt., Mugi-chō, Kaifu-gun, 18–1–1–III–2009, MY (40 cm; SW); 1♀, same locality, 1–15–III–2009, KT (40 cm; SW); 4♂♂, 1♀, ShimoÔuchi, 130 m in alt., Aikawa, Kaiyô-chō, Kaifu-gun, 8–II–1–III–2009, MY (50 cm; SW); 3♂♂, 2♀♀, same data but KT (40 cm; SW).

Catops hisamatsui Y. HAYASHI, 1985

Tokushima Pref.: 1♀, Nakatani, 120 m in alt., Bandô, Ôasa-chō, Naruto-shi, 11–II–16–III–2008, MY (50 cm; SW); 1♀, Munakê-dani, 60 m in alt., Ôtani, Ôasa-chō, Naruto-shi, 21–XII–2008–11–I–2009, MY (50 cm; SW); 1♀, same data but KT (40 cm; SW); 10♂♂, 3♀♀ (incl. 3 teneral ♂♂), Shirutani, 90 m in alt., Kumadani-chō, Anan-shi, 4–14–V–2008, KT (40 cm; SW); 5♂♂, 3♀♀, same data but 14–II–15–III–2009, 1♀, Kamouda, 30 m in alt., Tsubaki-chō, Anan-shi, 23–II–30–III–2008, KT (30 cm; SW); 1♂, Mizunashi, 180 m in alt., Nishiu, Yamashiro-chō, Miyoushi-shi, 16–IX–9–XII–2008, KT (40 cm; SW); 1♀, Mt. Takashiro-yama, 1,400 m in alt., Kisawa, Naka-gun, 13–30–X–2008, MY (50 cm; SW); 1♂ (teneral), Myôjin, 260 m in alt., Fukamori, Kaminaka, Naka-chō, Naka-gun, 4–20–IV–2008, KT (40 cm; SW); 1♀, Kainose, 180 m in alt., Kiyô-chō, Kaifu-gun, 20–IV–3–V–2008, KT (40 cm; SW); 1♂, Akimaru, 180 m in alt., Hiwasa, Minami-chō, Kaifu-gun, 22–II–15–III–2009, MY (50 cm; SW); 1♂, 1♀, Okutani, 180 m in alt., Mugi-chō, Kaifu-gun, 12–IV–3–V–2008, MY (40 cm; SW); 1♂, same data but 220 m in alt.; 9♂♂, 10♀♀ (incl. 2 teneral ♀♀), same data but (50 cm; CB); 1♂, 6♀♀, same locality, 18–1–1–III–2009, MY (40 cm; SW).

Catops miensis miensis NAKANE, 1956

Tokushima Pref.: 1♀, Kajiyama, 420 m in alt., Anabuki-chō, Mima-shi, 26–X–9–XII–2008, KT (40 cm; SW); 1♂♂, 1♀♀, Mt. Kumosô-yama, 1,120 m in alt., Kaminaka, Naka-chō, Naka-gun, 24–VIII–28–IX–2008, MY (40 cm; SW); 2♀♀, Myôjin, 230 m in alt., Fukamori, Kaminaka, Naka-chō, Naka-gun, 23–XI–8–XII–2007, KT (40 cm; SW); 2♂♂, Rokuchō, 440 m in alt., Kawamata, Kaminaka, Naka-chō, 16–30–XII–2007, KT (40 cm; SW); 1♂, Okutani, 180 m in alt., Mugi-chō, Kaifu-gun, 18–1–1–III–2009, MY (40 cm; SW).

Mesocatops japonicus (JEANNEL, 1936)

Tokushima Pref.: 1♀, Ryôô-zan, 350 m in alt., Nishitani, Ôsaka, Itano-chô, 1–29–VI–2008, MY (50 cm; SW); 1♂♂, 1♀♀, Shirutani, 90 m in alt., Kumadani-chō, Anan-shi, 4–14–V–2008, KT (40 cm; SW); 1♂, Sezu, 450 m in alt., Kakeban, Kisawa, Naka-chō, 20–IV–3–V–2008, KT (40 cm; SW); 6♂♂, 2♀♀, Mt. Ôkubo-yama, 1,300 m in alt., Iwakura, Kisawa, Naka-gun, 24–VIII–28–IX–2008, MY (50 cm; SW); 1♀, Myôjin, 260 m in alt., Fukamori, Kaminaka, Naka-chō, Naka-gun, 4–20–IV–2008, KT (40 cm; SW); 1♂, 1♀, Hirayabu, 390 m in alt., Kawamata, Kaminaka, Naka-chō, 4–20–IV–2008, KT (40 cm; SW); 1♂, 6♀♀, Kainose, 200 m in alt., Ogawa, Kiyô-chō, Kaifu-gun, 28–III–20–IV–2008, KT (40 cm; SW). Kôchi Pref.: 1♀, Befukyô, 620 m in alt., Monobe, Kami-shi, 10–VIII–12–IX–2008, MY (50 cm; SW).
Sciodrepoides tsukamotoi Nakane, 1956*

Tribe Ptomaphagini

Ptomaphagus (Ptomaphagus) kuntzeni Sokolowski, 1957*

Discussion

Baited deep-soil trap. Coleopterists have devised several types of baited deep-soil traps, but the usage of these traps is fairly recent (Owen, 1995; López & Oromí, 2010; Giachino & Vailati, 2010; Fresneda et al., 2011). Most of these traps seem to have been designed to attract dwellers only in a specific target layer, using a cylindrical long pipe. Yoshida’s trap described herein does not use such a pipe, and it is thus compact and easy to carry. However, dwellers of several layers seem to possibly be attracted together when the trap was installed at the bottom of a vertical hole. The specimens listed were collected by the trap at the bottom of a vertical hole (Fig. 1.b–i shows a horizontal hole), and consequently, the determination of their dwelling layer (Table 2) might be somewhat ambiguous. Nevertheless, it is expected that this powerful trap method will be accepted and widely used by coleopterists to clarify soil-dwelling beetle fauna.

Consideration of the species collected. Most species of the agyrtid genus Apteroloma are less wet-adapted and generally found in forests or open habitats, with the exception that some species are common along snow-runoff streams in alpine habitats (Newton, 2005). Little is known about the habitat of Apteroloma discicolle discicolle. This species is alate but usually found under stones at high elevation (e.g., Lewis, 1893). Further, it has been reported that this species is abundant under debris accumulated in gutters along newly constructed mountain roads in a montane zone during a relatively short period of a few years (Nishikawa, 1997). This suggests that the gutters probably played a role as a trap, and the species may also dwell in underground habitats, because the layers of a slope on the mountain-side of the road are often exposed. The present specimen was taken by the trap installed at 50 cm below the surface, and its collecting site, Udatsu-goe at an altitude of 210 m, is unexpectedly lower in elevation than those of the previously recorded sites despite their southern location. If this species’ ordinary habitat of lower elevations is limited to underground, this is interesting as an example of habitat isolation, because a study hypothesized that the habitat of agyrtids is ecologically cornered as a result of competition with carabids and silphids (Newton, 1997).

Four epigean cholevines were unexpectedly collected from underground habitats; all of cholevines that have hitherto been found from caves of Shikoku were caught by the trap, suggesting that they seem to facultatively inhabit both endogean and hypogean habitats. In addition, some of the cholevines previously found in epigean habitats are expected to be found in such habitats in future investigations. Hoshina (2006) pointed out that the Japanese Catops species described as cavernicolous are not clearly so by a strictly biospeleological definition. Accordingly, we expand Hoshina’s view on such Catops species to all Japanese cholevines, which are found in caves but do not exhibit any cave-adapted feature except somewhat reduced eyes (Giachino et al., 1998).

The distribution of C. hisamatsui has been clarified, in contrast to that of other Japanese cave-dwelling Catops species; there are 42 known localities of C. hisamatsui in Shikoku, and there are 26
in western Honshu (Hiroshima and Okayama Prefectures) (NISHIKAWA & FUJITANI, unpubl. data). This species has been known to feed mainly on bats’ fresh droppings and guano, but sometimes they feed on decaying dead small animals (OKUSHIMA, 1994, as C. ohbayashii; NISHIKAWA & FUJITANI, unpubl. observation). From the viewpoint of its main food resource, it is expected that C. hisamatsui occurs widely in Shikoku, where there are transversely ranged limestone areas with many caves inhabited by bats (except for Kagawa Prefecture; Fig. 3). Wideness in habitat use (see Table 2) and a possible high dispersal ability (incidental dispersal by flight is surmised from NISHIKAWA et al., 2011) of the species might promote expansion in its distribution.

The two types of collecting sites (see Table 1) may correspond to a variation in the depth of the upper hypogean zone, as we hypothesized in the Introduction. However, based solely on the present results, it is not clear whether the difference between the two types of collecting sites depends on underground conditions.

Acknowledgements

We thank all of the colleagues listed in the Material and Methods section and Keitaro HARUSAWA (Osaka-sayama, Japan), Hideto HOSHINA (University of Fukui, Japan), Yoshiyuki ITO (Kochi, Japan), Hiromu KAMEZAWA (Kawagoe, Japan), Haruki KARUBE (Kanagawa Prefectural Museum of Natural History, Japan), Hiroshi MAKIHARA (Forestry and Forest Products Research Institute, Japan), and Takasuke MIYATA and Toshie MIYATA (Kochi, Japan) for giving us interesting specimens or useful information. We also thank Kôji TANAKA (Tokushima, Japan) for his cooperation in the investigation of the underground beetle fauna in Shikoku. We wish to thank the two anonymous reviewers.

要約

西川正明・林 靖彦・吉田正隆・藤谷美文：四国東部における地下のツヤシデムシとチビシデムシ相（コウチュウ目ツヤシデムシ科，タマキノコムシ科ツヤシデムシ亜科），および日本産チビシデムシ数種の生息場所の多様性。——地下ペートトラップを使用して得られた，四国東部産のツヤシデムシ科及びチビシデムシ亜科甲虫9種を，トラップの地表からの設置距離，ペートの種類のデータを付して報告した。なお，地下ペートトラップ法は，著者の1人の吉田によって独自に考案されたものなので，トラップ本体と設置の実際についてを詳細に記し，このトラップの効果を論じた。さらに，地下から得られている日本産チビシデムシの生息場所の多様性を表3にまとめ，この調査で新たに得られた知見と課題を示した。また，シコクチビシデムシを例として四国の洞窟に居住するチビシデムシの分散を論じた。

References

———. 1997. On the Catops-species collected from the caves of Japan (Coleoptera: Catopidae). Kita-kyûshû-no-Konchû, Kokura, 44: 7–8, pl. 2. (In Japanese, with English title and descriptions.)

Appendix 1. List of localities of *Catops hisamatsui* in Shikoku according to the literature.

Localities within a prefecture are arranged from north to south and from west to east. Geographical coordinates and the synonymous name of a cave are indicated in brackets. Sources are indicated in parentheses.

Ehime Pref.:

Kuroiwa-dô Cave [ca. 33.6157°N 132.9686°E; 400 m in alt.] (ISHIKAWA, 1954, as *Catops* sp.; HAYASHI, 1985, as the type locality of *Catops hisamatsui* Y. HAYASHI).

Hondani [ca. 33.5300°N 132.8436°E] (HARUSAWA & YAMAMOTO, 2000).

Rakan-ana Cave [ca. 33.4889°N 132.8375°E; 720 m in alt.] (KAWASANO, 1969, as *C. ohbayashii*; HARUSAWA & YAMAMOTO, 2000).

Ryu'un-shōnyūdō Cave [closed at present; ca. 33.4314°N 132.6637°E] (HAYASHI, 1985).

Anagami-shōnyūdō Cave [Anagami-dō; ca. 33.3840°N 132.8180°E] (HAYASHI, 1985).

Ana-no-gozen Cave [ca. 33.3346°N 132.5236°E; 250 m in alt.] (ISHIKAWA, 1954, as *Catops* sp.).

Tokushima Pref.:

Zenjō-kutsu Cave [=Senjō-no-kutsu or Kanjō-no-kutsu; ca. 33.9462°N 134.4302°E; ca. 650 m in alt.] (KIUCHI & YOSHIDA, 1969, as *C. ohbayashii*).

Hobashira-no-iwaya Cave [ca. 33.9461°N 134.4309°E; ca. 650 m in alt.] (Kiuchi and Yoshida 1969, as *C. ohbayashii*).

Ryū-no-iwaya Cave [ca. 33.8812°N 134.5418°E; 200 m in alt.] (KIUCHI & YOSHIDA, 1969, as *C. ohbayashii*).

Ryū-no-iwaya Cave [ca. 33.8743°N 134.5490°E; 470 m in alt.] (ISHIKAWA, 1954, as *Catops* sp.).

Myōjin-daitai-dō Cave [=Myōjin-no-kutsu; ca. 33.8645°N 134.2611°E; ca. 650 m in alt.] (KIUCHI & YOSHIDA, 1969, as *C. ohbayashii*).

Myōjin-daimi-dō [ca. 33.8637°N 134.2620°E; ca. 600 m in alt.] (KIUCHI & YOSHIDA, 1969, as *C. ohbayashii*).
Tōgen-daiichidō Cave [ca. 33.8599°N 134.2792°E] (Kawano et al. 1971, as *C. ohbayashii*).
Tōgen-daisandō Cave [ca. 33.8596°N 134.2800°E] (Kawano et al. 1971, as *C. ohbayashii*).
Gogen-dō Cave [ca. 33.8274°N 134.2821°E; ca. 560 m in alt.] (Kiuchi & Yoshida, 1969, as *C. ohbayashii*).
Himise-dō Cave [ca. 33.8078°N 134.3435°E; ca. 300 m in alt.] (Kiuchi & Yoshida, 1969, as *C. ohbayashii*).
Oriu-daini-dō Cave [ca. 33.7776°N 134.1371°E; ca. 600 m in alt.] (Kiuchi & Yoshida, 1969, as *C. ohbayashii*).

Kochi Pref.:
Ganigoe-no-kin’udō Cave [ca. 33.6355°N 133.5772°E; 350 m in alt.] (Hayashi, 1985).
Nishimata-dō Cave [ca. 33.6852°N 133.7280°E; ca. 500 m in alt.] (Sone & Kawasawa, 1999, as *C. ohbayashii*).
Shiroiwa-no-ana Cave [ca. 33.6401°N 133.6549°E; ca. 320 m in alt.] (Kawasawa et al., 1978).
Tengyōji-dō Cave [=Tanuki-ana; destroyed; ca. 33.6401°N 133.6549°E; ca. 320 m in alt.] (Kawasawa et al., 1978).
Tadenokawa–Nakamura [ca. 32.9984°N 132.9349°E; 8 m in alt.]—Shimoda, Kochi Pref. (Hayikawa et al., 2011).

Appendix 2. List of specimens examined of *Catops hisamatsui* from Shikoku other than those of the present investigation. Localities within a prefecture are arranged from north to south and from west to east.

Kochi Pref.: 5 ♂♂, 6 ♀♀, Kurumabu-dō Cave [32.4019°N 132.8841°E; 524 m], Miyamono, Yusuhara, 17 ~ 18–II–1992, H. Karube leg. (MNC); 1 ♀, Wakamiya [ca. 33.6505°N 133.6765°E], Tosayamada, 3–XI–1999, T. Beppu leg. (MNC); 5 ♂♂, 1 ♀ (incl. teneral 2 ♂♂), Ishida-dō Cave [ca. 33.5224°N 133.3754°E; 92 m], Hidakama-mura, Takaoka-gun, 23–IV–1992, Y. Ito leg. (MNC).